一、简介
选择性催化还原技术(SCR),SCR是目前最成熟的烟气脱硝技术, 它是一种炉后脱硝方法, 最早由日本于20世纪60~70 年代后期完成商业运行, 是利用还原剂(NH3, 尿素)在金属催化剂作用下, 选择性地与 NOx 反应生成氮气和水, 而不是被氧气氧化, 故称为“ 选择性” 。
二、SCR脱硝系统
SCR脱硝系统主要由SCR催化反应器、氨气注入系统、烟气旁路系统、氨的储存和制备系统等组成。SCR催化反应器的布置方式,目前国内外一般采用高尘布置方式,即布置在省煤器和空预器之间的高温烟道内。在该位置,烟气温度能够达到反应的最佳温度。因此本期工程脱硝装置拟采用高尘布置方式。烟气在锅炉省煤器出口处被平均分为两路,每路烟气并行进入一个垂直布置的SCR反应器里,即每台锅炉配有二个反应器,烟气经过均流器后进入催化剂层。在烟气进入催化剂层前设有氨气注入系统,烟气与氨气充分混合后进行催化剂反应,脱去NOX。反应后的烟气进入空预器、电除尘器、引风机和脱硫装置后,排入烟囱。SCR反应器布置在空预器上方。
三、SCR脱硝设备
(1)反应器/催化剂系统
主要设备:反应器,催化剂,吹灰器。
(2)烟气/氨的混合系统
主要设备:稀释风机,静态混合器,氨喷射格栅(AIG),空气/氨混合器。
(3)氨的储备与供应系统
主要设备:卸料压缩机,氨蒸发器(电/蒸汽),氨罐,缓冲罐,稀释槽。
(4)烟道系统
主要设备:挡板(有旁路),膨胀节,导流板,烟道。
(5)SCR的控制系统
主要设备:DCS、PLC、仪表、盘柜等。
四、scr脱硝的运行原理
1、工作原理
氨气作为脱硝剂被喷入高温烟气脱硝装置中,在催化剂的作用下将烟气中NOx 分解成为N2和H2O,其反应公式如下:
催化剂 4NO + 4NH3 +O2 →4N2 + 6H2O
催化剂 NO +NO2 + 2NH3 →2N2 + 3H2O
一般通过使用适当的催化剂,上述反应可以在200 ℃~450 ℃的温度范围内有效进行, 在NH3 /NO = 1的情况下,可以达到80~90%的脱硝效率。
烟气中的NOx 浓度通常是低的,但是烟气的体积相对很大,因此用在SCR装置的催化剂一定 是高性能。因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求。
2、工艺流程
还原剂 (氨) 用罐装卡车运输,以液体形态储存于氨罐中;液态氨在注入SCR 系统烟气之前经由蒸发器蒸发气化;气化的氨和稀释空气混合,通过喷氨格栅喷入SCR反应器上游的烟气中;充分混合后的还原剂和烟气在SCR反应器中催化剂的作用下发生反应,去除NOx。
五、SCR脱硝催化剂
催化剂作为SCR脱硝反应的核心,其质量和性能直接关系到脱硝效率的高低,所以,在火电厂脱硝工程中, 除了反应器及烟道的设计不容忽视外,催化剂的参数设计同样至关重要。
一般来说,脱硝催化剂都是为项目量身定制的,即依据项目烟气成分、特性,效率以及客户要求来定的。 催化剂的性能(包括活性、选择性、稳定性和再生性)无法直接量化,而是综合体现在一些参数上,主要有:活性温度、几何特性参数、机械强度参数、化学成分含量、工艺性能指标等。对SCR工艺使用的催化剂应达到下列要求:
①低温度时在较宽温度范围具有较高的活性 ;
②高选择性( SO2 向SO3 转换率和其他方面作用低即副反应少;
③对二氧化硫( SO2 ) 、卤族酸(HCl, HF)和碱金属(Na2O、K2O)和重金属(如As)具有化学 稳定性 ;
④克服强烈温度波动的稳定性 ;
⑤对于烟道压力损失小 ;
⑥寿命长、成本低理想的催化剂应具有以下优点:高活性;抗中毒能力强;好的机械强度和耐磨损性; 有合适的工作温度区间。
六、scr脱硝技术的优缺点
1、优点
该法脱硝效率高,价格相对低廉,广泛应用在国内外工程中,成为电站烟气脱硝的主流技术。
2、缺点
燃料中含有硫分, 燃烧过程中可生成一定量的SO3。添加催化剂后, 在有氧条件下, SO3 的生成量大幅增加, 并与过量的 NH3 生成 NH4HSO4。NH4HSO4具有腐蚀性和粘性, 可导致尾部烟道设备损坏。 虽然SO3 的生成量有限, 但其造成的影响不可低估。另外,催化剂中毒现象也不容忽视。
扩展资料
SCR脱硝的7个关键技术?
1 喷氨装置
喷氨装置作为SCR法脱硝装置的核心部分之一, 直接影响脱硝效率及烟气系统阻力, 从而影响脱硝系统的运行成本。
目前, 用于SCR法脱硝的喷氨装置主要有涡流混合器、喷氨静态混合器、喷氨格栅及矩齿喷氨格栅等。
由中国-- 工程(集团)有限公司研制的矩齿防磨混合板型喷氨格栅, 混合阻力低、混合效果好、混合距离短、安装方便、调试简单, 与同类装置相比, 可减少脱硝系统阻力50 ~ 100 Pa, 节约引风机电耗4%以上, 节能效果明显。
2 流场模拟试验
进入反应器催化剂层入口的烟气流场分布均匀与否直接影响脱硝系统的各项性能指标, 如果流场分布不均匀, 不但会严重影响脱硝效率、增加氨的逃逸、加速催化剂磨损, 严重时还会堵塞催化剂或引起空气预热器的堵塞和严重腐蚀, 从而影响主机的正常运行, 因此, 流场模拟试验研究在脱硝系统设计中极为重要。
典型流场设计要求的反应器顶层催化剂层入口烟气条件见表2, 如果要求脱硝效率达到85%以上, 则催化剂层入口的烟气条件还要更严格。
流场模拟试验研究主要分为计算流体力学CFD计算与物理模型试验验证2部分。
CFD计算最为关键的是计算模型的建立与边界条件的设定, 计算模型建立时要根据实际烟气系统设计情况确定烟气系统内部件是否简化以及计算网格的大小, 以达到计算速度和精度统一的目的;为了便于脱硝系统入口边界条件的设定, 通常将省煤器换热管束出口作为脱硝系统CFD计算的入口, 将锅炉空气预热器入口作为脱硝系统CFD计算的出口, 易于设定CFD计算条件。
进行物理模型试验验证时, 通常选用1∶15 ~ 1∶10的比例搭建试验装置, 冷态试验时最大程度上使雷诺数与实际工程雷诺数一致, 以准确地反映实际工程的流动特性, 用以验证CFD计算结果, 从而保证实际工程烟气系统设计满足流场分布要求。
3 SCR反应器的设计
SCR反应器作为SCR法脱硝反应最为关键的设备,其截面的设计不但要考虑最佳烟气流速, 还要考虑能够适应不同类型的催化剂模块布置、安装的要求。因此, 反应器截面与催化剂的支撑梁的设计要按通用(满足蜂窝式、平板式、波纹板式催化剂模块)设计考虑, 使得每种类型的催化剂模块都能互换安装。
为了保证烟气在催化剂层的均匀性与入射角度, 反应器顶部应设计有烟气整流层;为了防止反应器内部导流板、支撑结构等部件掉落的积灰以及烟道内絮状杂物堵塞催化剂孔道, 反应器内应设置碎灰格栅。
催化剂的吊装是通过布置在反应器外的吊轨和电动葫芦来实现的, 吊轨的设计要充分考虑催化剂模块、吊具、电动葫芦的重量以及吊装过程中各种摆动引起的惯性力的作用。反应器内催化剂安装轨道的设计要充分考虑易于催化剂模块的吊装并且要防止灰尘的堆积。
为了防止催化剂层的积灰堵塞催化剂孔道, 通常在每层催化剂层上部设置吹灰器。常用于SCR法脱硝的吹灰器有声波和蒸汽2种形式, 其选型与布置要根据具体工程烟气灰的特性以及反应器截面尺寸来确定。
4 脱硝烟道灰斗
SCR法烟气脱硝装置的布置方式根据反应器布置位置的不同, 通常可分为高尘布置与低尘布置,。
高尘布置的SCR反应器通常布置在锅炉省煤器与空气预热器之间, 受布置空间所限, SCR反应器不能直接布置在锅炉省煤器下(立式锅炉除外),而是烟气通过水平烟道引出后再通过上升烟道连接SCR反应器, 经过脱硝反应后再通过SCR反应器出口烟道回到空气预热器。
典型高尘布置设计方式, 在SCR反应器入口和出口烟道均需设计排灰斗(特别是对于高粉尘烟气), 这样, 不但可以有效减小催化剂的磨损, 而且可以有效减轻空气预热器的堵塞和磨损, 同时也可以减少脱硝还原剂的消耗量, 保证系统安全、稳定运行。
在工程建设中, 为了降低工程造价、简化系统或受空间限制, 通常取消了SCR反应器出、入口的灰斗, 这势必会导致运行不稳定, 并且加大了催化剂的磨损, 加快催化剂的失活。根据目前国内锅炉燃烧煤质多变的特点以及国内燃煤发电机组布置特点, 在SCR反应器入口烟道应设计灰斗, 以保护催化剂、提高系统运行的可靠性、减少烟道内的磨损和降低运行维护成本。
5 催化剂选型
目前, 常用于SCR法脱硝的催化剂主要为氧化钛基催化剂, 其主要成分为TiO2 , V2O5 , WO3 和MoO3 等, 主要有蜂窝式、平板式和波纹板式。
蜂窝式催化剂为均质一次挤出成型, 具有较高的比表面积;平板式催化剂以不锈钢网格为基材, 浸镀活性材料, 有较高的耐飞灰磨损性和较低的压力损失, 抗砷中毒能力强;波纹板式催化剂以强化的玻璃纤维为基材, 浸镀活性材料, 质量小、活性高、抗CaO中毒能力强。
原则上, 不同类型的催化剂均能满具体项目的各项性能指标要求, 但不同类型的催化剂其活性、节距、有效比表面积、催化剂体积与阻力等均不相同, 因此, 可以通过比较来选择一种最佳的催化剂形式与布置方式, 以提高项目的性价比, 有效降低项目初建与运行成本。
6 脱硝系统调试
脱硝系统调试是保证系统运行的稳定性、可靠性以及能否达到设计性能保证值最重要的工作之一。
脱硝系统调试可分为2大部分:还原剂供应系统调试及喷氨系统调试。还原剂供应系统(常用还原剂为液氨, 本文以液氨为例)主要包含液氨卸载、液氨蒸发及供应、罐区水喷淋、氨区消防及废气收集排放等子系统。还原剂供应系统的调试最重要的是卸氨前氨管道的气密性检查与氮气置换, 要确保氨管道的气密性与氮气置换的彻底性, 调试的关键是液氨蒸发系统的运行与控制。
喷氨系统调试是脱硝系统调试最为关键和重要的部分, 其不但关系到脱硝系统性能是否满足设计要求, 还关系到脱硝系统是否能够优化运行。
工程建设中由于新装的催化剂活性较高, 脱硝系统运行初期, 即便喷氨装置没有优化调整, 通常也能满足性能要求。由于喷氨系统调试工作量较大, 脱硝工程往往会忽略喷氨系统的优化调试, 这将严重影响脱硝系统的长期运行, 工程建设中需特别注意。
7 脱硝系统运行与维护管理
脱硝系统的正确运行与定期维护是保证脱硝装置正常运行的关键, 目前建设的脱硝系统自动化水平均较高, 除了还原剂卸载外, 基本可以实现无人值守, 但系统的正确运行、维护与管理非常重要。系统运行期间要特别关注稀释风量、脱硝效率、氨逃逸量、液氨耗量、催化剂层阻力、空气预热器阻力等参数的变化, 要按要求定期检查分析仪表、吹灰器、稀释风机、卸氨压缩机、催化剂的活性以及氨管道的泄露情况等。