低氮燃烧,低氮燃烧的基本原理

2020-02-12 15:24:57发布

  抑制NOx的生成可采取的措施有:

  1.降低锅炉峰值温度,将燃烧区的煤粉量降低。

  2.降低氧浓度(即降低过量空气系数),将部分二次风管堵住。

  3.由于要保证锅炉的出力,可将部分煤粉和空气从锅炉上部投入,这样就控制了燃烧火焰中心区域助燃空气的数量,缩短燃烧产物在高温火焰区的停留时间,避免了高温和高氧浓度的同时存在。

  4.在炉膛中设立再燃区,利用在主燃区中燃烧生成的烃根CHi和未完全燃烧产物CO、H2、C和CnHm等,将NO的还原成N2。

  将80%~85%的燃料送入主燃区,燃料在主燃区燃烧生成NOx,15%~20%的燃料送入再燃区,再燃区过量空气系数小于1.0(α<1.0),具有很强的还原性气氛,在主燃区生成的NOx被还原;再燃区不仅能够还原已经生成的NOx,而且还抑制了新的NOx生成;在燃尽区供给一定量的空气(称为燃尽风),保证从再燃区出来的未完全燃烧产物燃尽。根据超细煤粉再燃低NOx燃烧技术原理和前期的研究结果,将整个炉膛燃烧区划分为主燃区、再燃区和燃尽区。各区域出口过量空气系数目标值为:主燃区出口α=0.9~1.0,再燃区出口α=0.8~0.9,燃尽区出口α=1.167。锅炉主、再燃区均以锅炉实际燃用煤为燃料,主燃区燃烧80%~90%的浓煤粉,再燃区喷入10%~20%的超细化煤粉作为再燃燃料。

  超细煤粉是指粒径小于43μm的煤粉,根据有关研究,这个尺度的煤粉有与雾化燃油相同的燃烧特性。在工程应用中,可以用浓淡分离器从常规煤粉中分离。1.低负荷

  优异的低负荷不投油稳燃能力,该设计的理念之一是建立煤粉早期浓缩着火,为此公司开发了高效浓淡分离装置、两层浓浓、淡淡一次风合用一层一次风室,中间完全分隔的一次风煤粉燃烧器、周界齿形的煤粉燃烧喷嘴,同时一次风煤粉反切射流技术,极大地提高锅炉的不投油低负荷稳燃能力。根据设计和校核煤种的着火特性,选用合适的煤粉浓缩比、煤粉喷嘴、和浓一次风反切角度,在煤种允许的变化范围内确保煤粉及时着火稳燃,并且燃烧器状态良好。

  2.煤粉

  优异的煤粉高效燃尽、防结渣及高温腐蚀的特性。首先,高浓度煤粉的早期着火提高了燃烧效率;同时通过在炉膛的不同高度布置底部二次风、偏置二次风、上部OFA和空间分离的S-OFA,将炉膛分成三个相对独立的部分:燃烧区,NOx还原区和燃尽区。在每个区域合理的控制各自的过量空气系数,这种改进的空气分级方法通过优化每个区域的过量空气系数,在有效降低NOx排放的同时能最大限度地提高燃烧效率;第三,通过燃烧器区域的刚性偏置二次风,在炉膛壁面附近形成低煤粉浓度的氧化区,避免了炉膛结渣和高温腐蚀的发生。第四,本技术将煤粉浓淡分离,所有浓一次风煤粉都布置在了燃烧区域下部,相当于提高了煤粉燃尽高度及NOx还原高度,有利于提高锅炉燃烧效率及降低NOx的排放水平。

  3.NOx燃烧

  超低的NOx燃烧排放特性,分级燃烧技术的最突出特点是超低NOx燃烧特性,在保证稳燃高效的前提下,通过采用高效浓淡分离技术、空间燃烧分级技术、一次风逆向射流等手段不仅保证煤粉早着火,稳定燃烧,通过采用上下、左右可调燃尽风喷口技术,实现炉内按需供风和降低炉膛出口烟温偏差,更重要的是实现了锅炉超低NOx的燃烧排放。

  4.小油点

  优异的小油点火稳燃能力,该设计采用公司经过了大量工业应用的煤粉气化小油燃烧点火技术,在第一层的浓、淡一次风的煤粉燃烧器中布置了小油点火装置,可以在锅炉冷态以及热态启动时完全不投入大油枪,极大地降低了锅炉的启动和在更低负荷下的稳燃油耗。

  5.分离燃尽风SOAF

  分离燃尽风SOAF还具有较好的降低炉膛出口烟温偏差特性,采用空间空气的分级燃烧技术不仅是降低NOx排放、提高煤粉燃尽率的重要手段,同时采用对SOFA的水平摆动调整,更有助于降低炉膛出口两侧烟温偏差而导致的过热器及再热器壁温偏差的作用

  CEE超低NOx燃烧技术无任何运行成本,它不仅实现锅炉的超低NOx排放,同时实现了锅炉高效稳燃、防结渣、防高温腐蚀、低负荷不投油稳燃、锅炉小油点火稳燃的特性,扩大了锅炉的煤种适应性等功能,在工业化应用中取得了优异的效果。

  低氮燃烧的基本原理

  目前,有多种技术用于控制高温氮氧化物,包括:

  .烧嘴设计

  .排气或烟气再循环。化学添加剂(如氨)。催化剂辅助。

  烧嘴制造商采用低氮氧化物排放导流板、空气分级和烟气再循环等设计。将炉中的燃烧产物(POC)导入火焰或者将排气系统的POC与空气或燃料混合,从而降低炉温,即可以达到烟气再循环的目的。

  烟气再循环可实现诱使从炉膛火焰燃烧(POC)的产品或使用POC的排气系统,与空气混合或燃料,降低火焰温度。可以用于控制反应速度的氧气,也被稀释,从而降低氧气进入氮氧化物生成反应的可能性。空气分级技术控制炉温和化学环境,从而降低氮氧化物的生成。

  低氮氧化物烧嘴总结

  布洛姆的低氮氧化物烧嘴涵盖了工业应用的常用范围。它包括直焰烧嘴和辐射管式烧嘴,可以用于冷助燃空气和换热器和蓄热装置产生的预热助燃空气。

  直焰烧嘴的核心是已证实的导流板技术。随着现代冷助燃空气烧嘴的再生应用,氮氧化物,一氧化碳和二氧化碳的排放水平明显低于预期值。

  在辐射管的设计中,布洛姆采用独特的工程方法,在烧嘴进行废气再循环时,热效率只有微不足道或非常小的损失。

  低氮燃烧器

  低氮燃烧器,可以理解为发动机、锅炉或动力源。其是一种源头减少排放的办法。原理是通过调节燃烧空气和燃烧头,可以获得最佳的燃烧参数。

  根据降低NOx的燃烧技术,低氮氧化物燃烧器大致分为以下几类:

  1.阶段燃烧器

  根据分级燃烧原理设计的阶段燃烧器,使燃料与空气分段混合燃烧,由于燃烧偏离理论当量比,故可降低NOx的生成。

  2.自身再循环燃烧器

  一种是利用助燃空气的压头,把部分燃烧烟气吸回,进入燃烧器,与空气混合燃烧。由于烟气再循环,燃烧烟气的热容量大,燃烧温度降低,NOx减少。

  另一种自身再循环燃烧器是把部分烟气直接在燃烧器内进入再循环,并加入燃烧过程,此种燃烧器有抑制氧化氮和节能双重效果。

  3.浓淡型燃烧器

  其原理是使一部分燃料作过浓燃烧,另一部分燃料作过淡燃烧,但整体上空气量保持不变。由于两部分都在偏离化学当量比下燃烧,因而NOx都很低,这种燃烧又称为偏离燃烧或非化学当量燃烧。

  4.分割火焰型燃烧器

  其原理是把一个火焰分成数个小火焰,由于小火焰散热面积大,火焰温度较低,使“热反应NO”有所下降。此外,火焰小缩短了氧、氮等气体在火焰中的停留时间,对“热反应NO”和“燃料NO”都有明显的抑制作用。

  5.混合促进型燃烧器

  烟气在高温区停留时间是影响NOx生成量的主要因素之一,改善燃烧与空气的混合,能够使火焰面的厚度减薄,在燃烧负荷不变的情况下,烟气在火焰面即高温区内停留时间缩短,因而使NOx的生成量降低。混合促进型燃烧器就是按照这种原理设计的。

  6.低NOx预燃室燃烧器

  预燃室是近10年来我国开发研究的一种高效率、低NOx分级燃烧技术,预燃室一般由一次风(或二次风)和燃料喷射系统等组成,燃料和一次风快速混合,在预燃室内一次燃烧区形成富燃料混合物,由于缺氧,只是部分燃料进行燃烧,燃料在贫氧和火焰温度较低的一次火焰区内析出挥发分,因此减少了NOx的生成。

  低氮燃烧器与炉膛尺寸

  目前,有多种技术用于控制高温氮氧化物,包括:

  .烧嘴设计

  .排气或烟气再循环。化学添加剂(如氨)。催化剂辅助。

  烧嘴制造商采用低氮氧化物排放导流板、空气分级和烟气再循环等设计。将炉中的燃烧产物(POC)导入火焰或者将排气系统的POC与空气或燃料混合,从而降低炉温,即可以达到烟气再循环的目的。

  烟气再循环可实现诱使从炉膛火焰燃烧(POC)的产品或使用POC的排气系统,与空气混合或燃料,降低火焰温度。可以用于控制反应速度的氧气,也被稀释,从而降低氧气进入氮氧化物生成反应的可能性。空气分级技术控制炉温和化学环境,从而降低氮氧化物的生成。

  低氮氧化物烧嘴总结

  布洛姆的低氮氧化物烧嘴涵盖了工业应用的常用范围。它包括直焰烧嘴和辐射管式烧嘴,可以用于冷助燃空气和换热器和蓄热装置产生的预热助燃空气。

  直焰烧嘴的核心是已证实的导流板技术。随着现代冷助燃空气烧嘴的再生应用,氮氧化物,一氧化碳和二氧化碳的排放水平明显低于预期值。

  在辐射管的设计中,布洛姆采用独特的工程方法,在烧嘴进行废气再循环时,热效率只有微不足道或非常小的损失。

  低氮燃烧技术有哪些

  据我国环保十二规划的要求,氮氧化物列入了大气污染物总量控制的指标。人们在关注氮氧化物的治理,考生也经常问各种氮氧化物的治理措施原理。

  SCR脱硝和SNCR脱硝的原理在教材中介绍较多,这里不说了。但对“低氮燃烧技术”在环评工程师技术方法教材中介绍很少,为了考试,对这种方法我认为还是要有所了解。说实话,我不是这方面的专家,在这里只能拾人牙慧了。

  低氮燃烧技术一直是应用最广泛、经济实用的措施。它是通过改变燃烧设备的燃烧条件来降低NOx的形成,具体来说,是通过调节燃烧温度、烟气中的氧的浓度、烟气在高温区的停留时间等方法来抑制NOx的生成或破坏已生成的NOx。低氮燃烧技术的方法很多,这里用通俗的文字介绍二种常用的方法。

  (1)排烟再循环法

  利用一部分温度较低的烟气返回燃烧区,含氧量较低,从而降低燃烧区的温度和氧浓度,从而抑制氮氧化物的生成,此法对温度型NOx比较有效,对燃烧型NOx基本上没有效果。

  (2)二段燃烧法

  该法是目前应用最广泛的分段燃烧技术,将燃料的燃烧过程分阶段来完成。第一阶段燃烧中,只将总燃烧空气量的70%—75%(理论空气量的80%)供入炉膛,使燃料在先在缺氧的富燃料条件下燃烧,由于富燃料缺,该区的燃料只能部分燃烧(含氧量不足),降低了燃烧区内的烘烘速度和温度水平,能抑制NOx的生成;第二阶段通过足量的空气,使剩余燃料燃尽,此段中氧气过量,但温度低,生成的NOx也较少。

打赏支持